SIMPLIFIED APPROACH FOR PILE AND FOUNDATION
INTERACTION ANALYSIS?

Discussion by George Gazetas,®> Member, ASCE

The paper studies the lateral dynamic response of a single pile in a homogeneous half-space
and a homogeneous stratum. Both the theoretical development and the results of the paper
raise some questions which follow in order of importance.

First, the pile is treated as a shear, rather than a flexural, beam. This, clearly, is an unrealistic
assumption. What is not clear is the reason that prompted the authors to introduce it. The
equations of motion can, after all, be easily solved even for a pile deforming in bending (flexural
beam).

Second, the results presented in Fig. 6(b) and Fig. 8, for a pile floating in a homogeneous
half-space, show the existence of a resonant frequency of about

a, = a,, ~ 0.045 (37)

o o, r

At this frequency, the horizontal stiffness (real part of the impedance) drops to about 60% of
its static value; at lower frequencies, radiation damping (represented by the imaginary part of
the impedance) vanishes.

This is a very surprising and, in fact, puzzling behavior. In a homogeneous half-space, a
floating pile is expected to have stiffness and damping that are smooth functions of frequency,
with neither resonance nor cutoff frequency, as has been shown by Roesset and Angelides
(1979), Roesset (1980), Kaynia (1981), Gazetas and Dobry (1984), Banerjee and Sen (1987),
Pak and Jennings (1987). The authors do not offer any discussion at all of their results in Figs.
6(b) and 8. Is, perhaps, this surprising behavior of their system an artifact of the unrealistic
shear-beam assumption, of inappropriate modeling of the lateral wave transmission, or of some
other, so far unknown, phenomenon?

In any case, the authors should also provide some comparisons of their results with the
established dynamic solutions, both for a stratum and a half-space, to demonstrate the accuracy
of their method.

Third, in using the ““Vlasov’” model to represent the soil reactions against the oscillating pile,
it appears that the authors might not have been aware of the seminal work on the subject by
Kerr (1964, 1965, 1984) or of several applications of the model in soil-structure interaction
problems (Jones and Xenophontos 1977; Selvadurai 1979; Gazetas 1982; Trochanis et al. 1987).
Of particular interest is the article of Kerr (1984), in which he proved that the Vlasov soil model
coincides with the two-parameter ““Pasternak’ model. The latter models the soil supporting a
foundation as a series of Winkler springs, the tops of which (forming the soil-foundation in-
terface) are tied together with a shear beam. The second-order governing differential equations
can then be written directly, with no need to resort to variational calculus as is done in the
paper. (Incidentally, this soil model should not be called a “‘linear elastic material’ as the authors
do in their abstract, since the established meaning of this term is obviously different).

Fourth, the effect of material damping ratio is also unusual. To begin with, the factor 8§ in
(3b) should not be called the “hysteretic material damping ratio for the soil.”” With the accepted
definition in the geotechnical literature, 8 is two times the hysteretic damping ratio in the soil,
which is hereafter called &. In any case, the results of the paper are for 3 = 0.20,1i.e., & = 10%
soil damping. With such a (high) damping, it is not possible to have exactly zero imaginary part
of the pile stiffness below the cutoff frequency. In fact, the overall hysteretic damping ratio D
in the pile-soil system at such low frequencies would be approximately equal to 3/4 of the
damping ratio in the soil, as shown by Dobry et al. (1982), Velez and Gazetas (1983), and
others. (The exact value is not always 3/4 but is a function of the relative rigidity of the pile,
approaching 1, i.e. overall damping equal to that in the soil, for a perfectly rigid pile.) Thus,
instead of zero, the low-frequency ordinate of all imaginary parts in Fig. 6 should be approxi-
mately equal to

Im(K,)/K,(0) = 2D =~ 2 X % x 0.10 = 0.15 (38)
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Closure by Keming Sun,* and Jose A. Pires,’
Associate Members, ASCE

The discusser raises some questions pertaining to the theoretical developments and the results
of the paper. Those questions are addressed as follows.

First, the method is introduced for a pile treated as a shear beam that approximates the
response of a short elastic pile with no rotations allowed at the pile head and pile tip, a situation
that may occur for a pile clamped to a rigid bottom underlying a soil layer. Otherwise, the
writers agree with the discusser that approximating the pile behavior with that of a shear beam
may not be a satisfactory approximation. Nevertheless, the method and formulation presented
are general and can be extended to flexural piles as written in the introduction and conclusions
of the paper, and by the discusser.

Second, the writers agree with the discusser that the real and imaginary parts of the dynamic
stiffness of floating piles in a half-space are expected (at least for the swaying mode) to be
smooth functions of frequency without a cutoff frequency. The cutoff frequency shown in Fig.
6(b) is, possibly, a result of the shear beam assumption for the pile.

Comparison with existing results, the relationship between the response of the pile head and
the loads applied at the pile head can be expressed by [e.g. Pak and Jennings (1987)]

Ay _[C. Co. | (V,
(e) - [c C] <M> o9
where A = horizontal displacement of the pile head; § = pile-head rotation, V, = normalized
applied horizontal force; M, = normalized applied moment; and the elements of the compliance

matrix [i.e. the matrix in (39)] are functions of the loading frequency. The displacement A for
0 = 01is given by

CoCom = ConCone 5
A= C Vo = C/V, (40)

mm

The real and imaginary part of the compliance C,, normalized with respect to its static value,
and computed using the results given in Kuhlemeyer (1979a), for E,/E, = 567 and & = 0.0,
and in Pak and Jennings (1987), for E,/E, = 1,000 (the results available for E,/E, = 567 are
not sufficient to compute Cy), H/R, = 50 and 8 = 0.0, are shown in Fig. 10. To compute the
results shown in Fig. 10, the static values of the compliances are needed. Those values are
computed here using the method proposed by Kuhlemeyer (1979a), i.e., equations 12 and 20
in Kuhlemeyer (1979a), for both sets of curves. Also shown in Fig. 10 are the real and imaginary
part of the compliance function, C,,, computed with the method proposed by the writers, for
HIR, = 50, E,/E, = 567,% = 0.00, and 8 = 0.02, which treats the pile as a shear beam.

The method presented by the writers indicates a cutoff frequency and a peak in the real part
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FIG. 10. Comparison with Existing Results for Floating Pile in Half-Space (E,/E, = 1,000 for Curves
Labeled Pak and Jennings)

of the flexibility coefficient, which are not observed with the other methods. It is noted that
the results labeled Pak and Jennings are supposed to be the more accurate ones, provided that
the static compliances are adequately computed using the method proposed by Kuhlemeyer
(1979a).

Third, the discusser provides additional references dealing with the so-called Vlasov and
Leontiev method. While providing an additional background for the Vlasov and Leontiev method,
those references are not relevant for the development and presentation of the method described
in the paper. In particular, the discusser writes that the Vlasov and Leontiev soil model coincides
with the so-called Pasternak soil model (Kerr 1984) for which the second-order differential
equations can be written directly, without the need to resort to variational calculus.

The formulation presentation in the paper makes use of variational calculus, which leads to
a full description of the pile-soil interaction in terms of the interaction parameter vy, which is
obtained iteratively for the static case and with the technique proposed in the paper for the
dynamic case. The use of variational calculus is generally considered a highly desirable and
preferred approach to establish the governing differential equations for both static and dynamic
problems.

Fourth, the material damping ratio constant 8 used in the paper is defined, without ambiguity,
following (3b) in the paper. The results presented in Fig. 6 are for 8 = 0.02 as written near the
bottom of page 1475, and not & = (.20 as erroneously marked in Fig. 6. Therefore, the results
shown in Fig. 6 are for a hysteretic material damping ratio £ = 0.01 (using the discusser’s
notation). For such small hysteretic damping ratios for the soil, and for a short stiff pile (H/R,
= 20) very small values may be expected for the imaginary part of the dynamic soil stiffness.

Errata. The following corrections should be made to the original paper:

Page 1473, Fig. 6(a): should read “8 = 0.02” instead of 8 = 0.2”
Page 1473, Fig. 6(b): should read “8 = 0.02” instead of “5 = 0.2”

Page 1471, Eq. (33): Should read
[a]®a]
0 dz

2_ =P
m G, * R (53
© | eF) dz
instead of
f G, [@} dz
n p, 7Y dz
L e g e TS = (33)
m G, p, F(z) dz
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